Noninstantaneous Impulsive Fractional Quantum Hahn Integro-Difference Boundary Value Problems
نویسندگان
چکیده
منابع مشابه
Impulsive Boundary-value Problems for First-order Integro-differential Equations
This article concerns boundary-value problems of first-order nonlinear impulsive integro-differential equations: y′(t) + a(t)y(t) = f(t, y(t), (Ty)(t), (Sy)(t)), t ∈ J0, ∆y(tk) = Ik(y(tk)), k = 1, 2, . . . , p,
متن کاملPeriodic boundary value problems for nonlinear impulsive fractional differential equation
In this paper, we investigate the existence and uniqueness of solution of the periodic boundary value problem for nonlinear impulsive fractional differential equation involving Riemann-Liouville fractional derivative by using Banach contraction principle.
متن کاملOn boundary value problems of higher order abstract fractional integro-differential equations
The aim of this paper is to establish the existence of solutions of boundary value problems of nonlinear fractional integro-differential equations involving Caputo fractional derivative by using the techniques such as fractional calculus, H"{o}lder inequality, Krasnoselskii's fixed point theorem and nonlinear alternative of Leray-Schauder type. Examples are exhibited to illustrate the main resu...
متن کاملBoundary Value Problems for First Order Impulsive Difference Equations ∗
In this paper, first order impulsive difference equations with linear boundary conditions are discussed. By using a new comparison theorem and the method of upper and lower solutions coupled with the monotone iterative technique, criteria on the existence of minimal and maximal solutions are obtained. AMS subject classification: 34D20, 34A37.
متن کاملNontrivial solutions for fractional q-difference boundary value problems
In this paper, we investigate the existence of nontrivial solutions to the nonlinear q-fractional boundary value problem (D q y)(x) = −f(x, y(x)), 0 < x < 1, y(0) = 0 = y(1), by applying a fixed point theorem in cones.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2020
ISSN: 2227-7390
DOI: 10.3390/math8050671